
To understand front-wing ground effect, it's worth revisiting some research performed by Zhang, Zerihan, Ruhrmann and Deviese in the early noughties, Tip Vortices Generated By A Wing In Ground Effect. This examined a single-element wing in isolation from rotating wheels and other downstream appendages, but the results are still very relevant.

The diagrams above show how this underwing vortex intensifies as the wing gets closer to the ground. In this regime, the downforce increases exponentially as the height of the wing is reduced. Beneath a certain critical height, however, the strength of the vortex reduces. Beneath this height, the downforce will continue to increase due to the venturi effect, but the rate of increase will be more linear. Eventually, at a very low height above the ground, the vortex bursts, the boundary layer separates from the suction surface, and the downforce actually reduces.

The diagram here, from the seminal work in the 1970s by Fackrell and Harvey, demonstrates that the rotating wheel creates a high pressure region in front of it, (zero degrees is the horizontal forward-pointing direction, and 90 degrees corresponds to the contact patch beneath the tyre). Placing a high-pressure area immediately behind a wing will presumably steepen the adverse pressure gradient on the suction surface of the wing, causing premature detachment of the boundary layer. Hence, when the wings were widened in the new regulations, most designers immediately directed the endplates of the wings outwards, seeking to direct the flow away from those high-pressure areas.
No comments:
Post a Comment